Semi-classical analysis and vanishing properties of solutions to quasilinear equations *

Yves Belaud

Abstract

Let Ω be an open bounded subset of \mathbb{R}^N and b a measurable nonnegative function in Ω. We deal with the time compact support property for

$$u_t - \Delta u + b(x)|u|^{q-1}u = 0$$

for $p \geq 2$ and

$$u_t - \text{div}(|\nabla u|^{p-2}\nabla u) + b(x)|u|^{q-1}u = 0$$

with $m \geq 1$ where $0 \leq q < 1$. We give criteria associated to the first eigenvalue of some quasilinear Schrödinger operators in semi-classical limits. We also provide a lower bound for this eigenvalue.

1 Introduction

Let Ω be a regular bounded domain of \mathbb{R}^N ($N \geq 1$) and $q \in [0, 1)$. We consider the weak solution of the degenerate parabolic equations subject to the Neumann boundary condition:

$$u_t - \Delta u + b(x)|u|^{q-1}u = 0 \quad \text{in } \Omega \times (0, \infty),$$

$$\partial_{\nu}u = 0 \quad \text{on } \partial \Omega,$$

$$u(x, 0) = u_0(x) \quad \text{in } \Omega,$$

and more generally,

$$u_t - \text{div}(|\nabla u|^{p-2}\nabla u) + b(x)|u|^{q-1}u = 0 \quad \text{in } \Omega \times (0, \infty),$$

$$\partial_{\nu}u = 0 \quad \text{on } \partial \Omega,$$

$$u(x, 0) = u_0(x) \quad \text{in } \Omega,$$

*Mathematics Subject Classifications: 35K55, 35P15.
Key words: evolution equations, p-Laplacian, porous-medium, strong absorption, regularizing effects, semi-classical limits.
©2002 Southwest Texas State University.
Published October 21, 2002.
with \(p \geq 2 \), or

\[
\begin{aligned}
 u_t - \Delta(u^m) + b(x)|u|^{q-1}u &= 0 \quad \text{in } \Omega \times (0, \infty), \\
 \partial_\nu u &= 0 \quad \text{on } \partial\Omega, \\
 u(x,0) &= u_0(x) \quad \text{in } \Omega,
\end{aligned}
\]

with \(m \geq 1 \).

Many authors have already dealt with such equations giving a wide range of applications in physical mathematics. Now, our task is to describe a compact compact support property, in time.

Definition. A solution \(u \) satisfies the Time Compact Support property (for short TCS property) if there exists a time \(T \) such that for all \(t \geq T \) and all \(x \in \Omega \), \(u(x,t) = 0 \).

First, we study some simple cases for (1.1):

1) Suppose that there exists a real \(\gamma \) such as \(b(x) \geq \gamma > 0 \) a.e. in \(\Omega \). From the maximum principle, \(u(x,t) \leq (1 - \gamma(1-q)t)^{\frac{1}{1-q}} \) in \(\Omega \times (0, \infty) \). The nonlinear absorption is stronger than the diffusion and the TCS property holds.

2) We have a different feature if we assume that there exists a connected open set \(\omega \) such as \(b(x) = 0 \) a.e. in \(\omega \) (no absorption in \(\omega \)). Then usually, \(u \) has not the compact support property. Indeed, if we denote by \(\lambda(\omega) \) the first eigenvalue of \(-\Delta \) in \(W^{1,2}_0(\omega) \) and \(\zeta \) the first eigenfunction with \(\|\zeta\|_{L^\infty(\omega)} = 1 \) and \(\zeta \geq 0 \), then from the maximum principle, \(u(x,t) \geq \zeta(x) e^{-\lambda(\omega)t} \) for all \(x \in \omega \) and for all \(t \geq 0 \).

Up to some minor changes, the previous examples are also valid if \(u \) satisfies (1.2) and (1.3). The compact support property is related to \(\{ x : b(x) = 0 \} \) and the behaviour of the function \(b \) in a neighbourhood of this set.

2 The time compact support property

The starting idea was in the article of Kondratiev and Véron [7]. They established this property for (1.1) with the help of the following quantities

\[
\mu_n = \inf \left\{ \int_\Omega (|\nabla v|^2 + 2^n b(x)|v|^2) dx : v \in W^{1,2}(\Omega), \int_\Omega |v|^2 dx = 1 \right\},
\]

with \(n \) positive integer number. More precisely, up to a small change, they proved the following theorem.

Theorem 2.1 Suppose that \(u \) is a solution of (1.1) and

\[
\sum_{n=0}^{+\infty} \frac{\ln \mu_n}{\mu_n} < +\infty,
\]

then there exists some \(T > 0 \) such that \(u(x,t) = 0 \) for \((x,t) \in \Omega \times [T, +\infty) \).
We see that \(\mu_n \) are linked to well-known questions in the semi-classical limit of Schrödinger operator of the type
\[-\Delta + 2^n b(.) \].

In [3], the authors give a first extension of this theorem by replacing the sequence \(2^n \) by any decreasing sequence going to zero. For the sake of simplicity, we denote by \(\mu(\alpha) \) the lowest eigenvalue of the Neumann realization of the Schrödinger operator
\[-\Delta + \alpha^{q-1} b(.) \] in \(W^{1,2}(\Omega) \), that is,

\[
\mu(\alpha) = \inf \left\{ \int_{\Omega} \left(|\nabla v|^2 + \alpha^{q-1} b(x)|v|^2 \right) dx : v \in W^{1,2}(\Omega), \int_{\Omega} |v|^2 dx = 1 \right\}.
\] (2.1)

They proved the following theorem [3, page 50].

Theorem 2.2 Assume that \((\alpha_n) \) is a decreasing sequence of positive numbers such that

\[
\sum_{n=1}^{+\infty} \frac{1}{\mu(\alpha_n)} (\ln(\mu(\alpha_n)) + \ln(\frac{\alpha_n}{\alpha_{n+1}}) + 1) < +\infty,
\] (2.2)

then any solution of (1.1) satisfies the TCS property.

The proof is based on an iterative method using the following lemma.

Lemma 2.1 Suppose that \(b \geq 0 \) a.e. in \(\Omega \), \(0 \leq q < 1 \) and \(u \) is a bounded weak solution of (1.1) such that \(\|u_0\|_{L^\infty(\Omega)} \leq \alpha \) for some \(\alpha > 0 \). Then

\[
\|u(\cdot, t)\|_{L^\infty(\Omega)} \leq \min \left(1, C(\mu(\alpha))^N e^{-t\mu(\alpha)} \right) \|u_0\|_{L^\infty(\Omega)},
\] (2.3)

where \(C = C(\Omega) \) is a positive real number.

Outline of the proof. We use \(u \) as test-function and since \(u^{1-q} \geq \alpha^{1-q} \), we have

\[
\frac{1}{2} \frac{d}{dt} \int_{\Omega} u^2 dx + \int_{\Omega} (|\nabla u|^2 + b\alpha^{q-1} u^2) dx \leq 0.
\]

The definition of \(\mu(\alpha) \) and Hölder’s inequality gives

\[
\|u(\cdot, s)\|_{L^2(\Omega)} \leq e^{-s\mu(\alpha)} \|u_0\|_{L^\infty(\Omega)},
\]

for all positive real number \(s \). The regularizing effects associated to this type of equation can be write under the following form [11, 12]:

\[
\|u(\cdot, t)\|_{L^\infty(\Omega)} \leq C(1 + \frac{1}{t-s})^{N/4} \|u(\cdot, s)\|_{L^2(\Omega)},
\]

for all \(t > s \). Taking \(t - s = 1/\mu(\alpha) \) completes the proof of the lemma. \(\Box \)
Sketch of the proof of the theorem 2.2. \((\alpha_n)\) is a decreasing sequence which tends to zero. We shall construct an increasing sequence \((t_n)\) such that for all \(n\),

\[
\forall t \geq t_n, \|u(., t)\|_{L^\infty(\Omega)} \leq \alpha_n.
\]

If \(\lim_{n \to +\infty} t_n = T < +\infty\) then \(u\) satisfies the TCS property. To do this, we use an iterative method to find an upper bound for \(\sum t_{n+1} - t_n\) under the form of a convergent series. We set \(t_0 = 0\) and \(\alpha = \alpha_0 = \|u_0\|_{L^\infty(\Omega)}\). Applying Lemma 2.1 gives an upper bound for \(\|u(., t)\|_{L^\infty(\Omega)}\). \(t_1\) is defined by

\[
C(\mu(\alpha_0))^{N/4} e^{-(t_1-t_n)\mu(\alpha_0)} \alpha_0 = \alpha_1.
\]

A this point, we apply Lemma 2.1 but for time \(t \geq t_1\) with \(\alpha = \alpha_1\). Iterating this process provide us the formula

\[
C(\mu(\alpha_0))^{N/4} e^{-(t_{n+1}-t_n)\mu(\alpha_n)} \alpha_n = \alpha_{n+1}.
\]

So we obtain an upper bound for the series \(\sum t_{n+1} - t_n\). An analogous result can be proved for \((1.2)\). But before, we recall the regularizing effects for this type of equation [11, 12].

Theorem 2.3 Let \(p > 1\). Suppose that \(u\) is a weak solution of

\[
\begin{align*}
 u_t - \text{div}(\nabla u |p-2\nabla u) + B(x, t, u) &= 0 \quad \text{in } \Omega \times (0, \infty), \\
 \partial_\nu u &= 0 \quad \text{on } \partial \Omega, \\
 u(x, 0) &= u_0(x) \in L^r(\Omega),
\end{align*}
\]

where \(B\) is a Caratheodory functions which satisfies \(B(x, t, \rho)\rho \geq 0\) a.e. in \(\Omega \times (0, \infty)\). If \(r \geq 1, r > N(2/p - 1)\) then

\[
\|u(., t)\|_{L^\infty(\Omega)} \leq C(1 + \frac{1}{r})^\delta(r) \|u(., 0)\|_{L^\sigma(r)},
\]

with \(C = C(\Omega, p), \delta(r) = \frac{N}{r p + N(p-2)}\) and \(\sigma(r) = \frac{r p}{r p + N(p-2)}\).

In a similar way, we introduce

\[
\mu(\alpha, p) = \inf \left\{ \int_\Omega (|\nabla v|^p + \alpha^{r-(p-1)} b(x)|v|^p) \, dx : v \in W^{1, p}(\Omega), \int_\Omega |v|^p \, dx = 1 \right\}.
\]

Here \(\mu(\alpha, p)\) is the first eigenvalue in \(W^{1, p}(\Omega)\) for the Neumann boundary condition

\[
u \mapsto -\Delta_\nu u + \alpha^{r-(p-1)} b(\nu)u^{p-1}.
\]

The theorem states as follows [1]:

Theorem 2.4 Let \(0 < q < 1, p > 2\) and assume that there exist two sequences of positive real numbers \((\alpha_n)\) and \((\gamma_n)\) such that \((\alpha_n)\) is decreasing and

\[
\sum_{n=0}^{\infty} \frac{\alpha_n^{p-2} \mu(\alpha_n, p) \sigma(\gamma_n)}{\alpha_n^{p-2} \mu(\alpha_n, p) \sigma(\gamma_n)} < +\infty. \quad (2.4)
\]

Then any solution of \((1.2)\) with initial bounded data satisfies the TCS property.
Consequently, if \(r_n = \ln \mu(\alpha_n, p) \), we have the following statement.

Corollary 2.1 Under the same assumptions on \(q \) and \(p \), if there exists a decreasing sequence of positive real numbers \((\alpha_n) \) such that

\[
\sum_{n=0}^{\infty} \frac{(\ln \mu(\alpha_n, p))^{p-1}}{\alpha_{n+1}^{p-1}} p < +\infty,
\]

then any solution of (1.2) satisfies the TCS property.

Theorem 2.4 comes from the following lemma.

Lemma 2.2 Suppose there exists a measurable function \(u \) in \(\Omega \times \mathbb{R}^+ \) which satisfies weakly (1.2) with \(\|u_0\|_{L^\infty(\Omega)} \leq \alpha \) for some \(\alpha > 0 \). Then

\[
\|u(., t)\|_{L^\infty(\Omega)} \leq \left(\frac{1}{\|u(., 0)\|_{L^{2-p}(\Omega)}^{2-p} + C_1 \mu(\alpha, p) t} \right)^{\frac{p}{2-p}},
\]

where \(C_1 = C_1(\Omega, r, p) \) is a positive real constant and there exist two positive real numbers \(C = C(\Omega, p) \) and \(C_2 = C_2(r, p) \) such that

\[
\|u(., t)\|_{L^{\infty}(\Omega)} \leq \min \left(C(1 + \frac{2}{t})^{\delta(r)} \left(\frac{1}{\|u(., 0)\|_{L^{2-p}(\Omega)}^{2-p} + C_2 \mu(\alpha, p) t} \right)^{\frac{\sigma(r)}{2-p}}, 1 \right),
\]

with \(\delta(r) = \frac{N}{rp + N(p-2)} \) and \(\sigma(r) = \frac{rp}{rp + N(p-2)} \).

Idea in the proofs. The principle to prove them remains true. It is a bit more complicated because the term \(u_t \) is not homogenous with \(u^{p-1} \) but it follows exactly the Kondratiev-Vron method as shown in the proof of Theorem 2.2. The main differences are technical. Instead of using \(u \) as test-function, we use \(u| u|^{\alpha-1} \) at each step of the iteration. An estimate of the asymptotic behaviour when \(r \to +\infty \) for the constant \(C_2 = C_2(r, p) \) is needed. The proof of the theorem ends with sharp upper bounds for the series \(\sum t_{n+1} - t_n \). \(\Box \)

Now, let us talk about equation 1.3. Formally, replacing \(p-1 \) by \(m \) give the same results [11, 12]:

Theorem 2.5 Let \(m > 0 \) and \(u \) be a weak solution of

\[
u_t - \Delta(u^m) + B(x, t, u) = 0 \quad \text{in} \ \Omega \times (0, \infty),
\]

\[
\partial_n u = 0 \quad \text{on} \ \partial\Omega,
\]

\[
u(x, 0) = u_0(x) \in L^r(\Omega),
\]

where \(B \) is a Caratheodory function satisfying \(B(x, t, \rho) \rho \geq 0 \) a.e. in \(\Omega \times (0, \infty) \). If \(r \geq 1 \) and \(r > N(1-m)/2 \), then

\[
\|u(., t)\|_{L^{\infty}(\Omega)} \leq C(1 + \frac{1}{t})^{\delta(r)} \|u(., 0)\|_{L^r(\Omega)}^{\sigma(r)} ,
\]

with \(C = C(\Omega, m) \), \(\delta(r) = \frac{N}{2r + N(m-1)} \) and \(\sigma(r) = \frac{2r}{2r + N(m-1)} \).
We set quantities adapted to the problem
\[
\mu'(\alpha, m) = \inf \left\{ \int_\Omega \left(\|\nabla v\|^2 + \alpha^{r-m} b(x)|v|^2 \right) dx : v \in W^{1,2}(\Omega), \int_\Omega |v|^2 dx = 1 \right\}.
\]

Thus,

Theorem 2.6 ([1]) Let \(0 \leq q < 1\), \(m > 1\) and assume that there exists two sequences of positive real numbers \((\alpha_n)\) and \((r_n)\) such that \((\alpha_n)\) is decreasing and

\[
\sum_{n=0}^{\infty} \frac{r_n^m}{\alpha_{n+1}^{m-1}} \mu'(\alpha_n, m)^{\sigma(r_n)} < +\infty.
\]

(2.7)

Then any solution of (1.3) with initial bounded data satisfies the TCS property.

With \(r_n = \ln \mu'(\alpha_n, m)\), we deduce the following statement.

Corollary 2.2 Under the above assumptions on \(q\) and \(m\), if there exists a decreasing sequence of positive real numbers \((\alpha_n)\) such that

\[
\sum_{n=0}^{\infty} \frac{(\ln \mu'(\alpha_n, m))^m}{\alpha_{n+1}^{m-1}} \mu'(\alpha_n, m)^{\sigma(r_n)} < +\infty,
\]

then any solution of (1.3) satisfies the TCS property.

The proof of Theorem 2.6 also comes from the following lemma.

Lemma 2.3 We suppose there exists a measurable function \(u\in \Omega \times \mathbb{R}^+\) which satisfies weakly (1.3) with \(\|u(\cdot,0)\|_{L^\infty(\Omega)} \leq \alpha\) for some \(\alpha > 0\). Then

\[
\|u(\cdot,t)\|_{L^r(\Omega)} \leq \left(\frac{1}{\|u(\cdot,0)\|^m_{L^r(\Omega)} + C_1 \mu'(\alpha, m) t} \right)^{1/(m-1)},
\]

(2.8)

with \(C_1 = C_1(\Omega, r, m)\) and there exist two positive real numbers \(C = C(\Omega, m)\) and \(C_2 = C_2(\Omega, m)\) such that

\[
\|u(\cdot,t)\|_{L^\infty(\Omega)} \leq \min \left(C(1+\frac{2}{m})^{\delta(r)} \left(\frac{1}{\|u(\cdot,0)\|^m_{L^\infty(\Omega)} + C_2 \mu'(\alpha, m) t} \right)^{\sigma(r)/(m-1)}, 1 \right),
\]

where \(\delta(r)\) and \(\sigma(r)\) are defined in Theorem 2.5.

The assumptions in Theorem 2.2 and Corollaries 2.1, 2.2 admit a simpler form. A comparison between series and integral gives the following theorem.

Theorem 2.7 (Integral criterion [3, 1]) Let \(0 \leq q < 1\). 1) If \(p \geq 2\) and

\[
\int_0^1 \frac{(\ln \mu(t,p))^p}{t^{p-1}} \mu(t,p) dt < +\infty,
\]
then all solutions of (1.2) satisfy the TCS property.

2) If \(m \geq 1 \) and
\[
\int_0^1 \frac{(\ln \mu'(t, m))^m}{t^m \mu'(t, m)} \, dt < +\infty,
\]
then all solutions of (1.3) satisfy the TCS property.

We remark that \(\mu(t) = \mu(t, 2) \) and that (1.1) is a particular case of (1.2) for \(p = 2 \) and (1.3) for \(m = 1 \). The proof is first establish for \(p = 2 \) [3, page 51] and then for \(p > 2 \) and \(m > 1 \) [1]. What is remarkable is that this criterion has a same simple form in all cases.

For applications, \(\mu(t, p) \) and \(\mu'(t, m) \) have to be linked directly to the function \(b \). We recall that \(\mu(\alpha, p) \) is the first eigenvalue in \(W^{1,p}(\Omega) \) for the Neumann boundary condition of \(u \mapsto -\Delta_p u + \alpha q - (p-1)b(\cdot)u^{p-1} \).

The aim of semi-classical analysis is to describe the behavior of the spectrum of the operator \(u \mapsto -\Delta_p u + h^{-p}V(\cdot)u^{p-1} \) in particular \(\lambda_1(h) \) the lowest eigenvalue. \(V \) is a function which holds in our case
\[
V \in L^\infty(\Omega), \quad \text{ess inf } \Omega V = 0 \quad \text{and} \quad \int_\Omega V(x) \, dx > 0.
\] (2.9)

We denote by \(\gamma \) a positive number which satisfies:
\[
\gamma = \begin{cases}
\frac{N}{p} & \text{for } 1 < p < N, \\
\in (1, +\infty) & \text{for } p = N, \\
1 & \text{for } p > N,
\end{cases}
\] (2.10)

Corollary 2.3 If (2.9) holds then for \(h \) small enough,
\[
\lambda_1(h)(\text{meas}\{x : V(x) \leq h^p \lambda_1(h)\})^{1/\gamma} \geq C,
\] (2.11)

where \(C = C(p, N, \gamma, \Omega, V) \) is a positive constant.

\(\mu(t, p) \) can be written as \(\mu(t, p) = \lambda_1(t^{\frac{(p-1)-q}{p}}) \) which after a change of variables gives
\[
\int_0^1 \frac{(\ln \mu(t, p))^{p-1}}{t^{p-1} \mu(t, p)} \, dt = \int_0^1 \frac{(\ln \lambda_1(h))^{p-1}}{h^{\frac{(p-1)+q}{p-1}(\frac{p}{p-1})}} \, dh.
\]

If we have an estimate of the type
\[
\lambda_1(h) \geq C \frac{1}{h^{\theta}},
\]
where \(C \) and \(\theta \) are two positive real numbers, then the integral criterion holds for \(p > 2 \) provided
\[
\theta > \frac{p(p-2)}{p - (1 + q)}.
\] (2.12)

Similar expressions can be found for \(p = 2 \) and \(m > 1 \). Finally, we obtain next theorem.
Theorem 2.8 (1/b criterion [3, 1]) Let $0 \leq q < 1$ and b be a bounded measurable function such that
\[
\inf_{\Omega} b = 0 \quad \text{and} \quad \int_{\Omega} b(x) \, dx > 0.
\]
1) If $p = 2$ and $\ln(1/b) \in L^s(\Omega)$ for some $s > N/2$ then equation (1.1) satisfies the TCS property.
2) If $p > 2$ and $(1/b)^s \in L^1(\Omega)$ for some s with
\[
s > \begin{cases}
\frac{p-2}{p-2} \frac{N}{p} & \text{for } p \leq N, \\
\frac{m-1}{1-q} & \text{for } p > N,
\end{cases}
\]
then equation (1.2) satisfies the TCS property.
3) If $m > 1$ and $(1/b)^s \in L^1(\Omega)$ for some s with
\[
s > \begin{cases}
\frac{m-1}{1-q} \frac{N}{2} & \text{for } N \geq 2, \\
\frac{m-1}{1-q} & \text{for } N = 1,
\end{cases}
\]
then equation (1.3) satisfies the TCS property.

Outline of the proof. The three cases are based on Marcinkiewicz type inequalities. For 1)
\[
\operatorname{meas} \left\{ x \in \Omega : \ln \frac{1}{b(x)} \geq \frac{1}{h^2 \lambda_1(h)} \right\} \leq \frac{1}{(\ln \frac{1}{h^2 \lambda_1(h)})^s} \int_{\Omega} \left(\frac{1}{b(x)} \right)^s \, dx,
\]
and for 2)
\[
\operatorname{meas} \left\{ x : \frac{1}{b(x)} \geq \frac{1}{h^p \lambda_1(h)} \right\} \leq (h^p \lambda_1(h))^s \int_{\Omega} \left(\frac{1}{b(x)} \right)^s \, dx.
\]
The proof ends with estimates such as (2.12) and some technical arguments. □

Remark 2.1 In the case where $p = 2$ and $N \leq 2$, estimate (2.11) is not enough sharp so we use the formula of Lieb and Thirring. See [3] for details.

Now we apply the previous theorem to the radial functions.

Corollary 2.4 Suppose that $0 \in \Omega$. 1) If $b(x) = \exp\left(-\frac{1}{\|x\|^\beta} \right)$ with $\beta < 2$ then any solution of (1.1) satisfies the TCS property.
2) If $b(x) = \|x\|^\beta$ with $p \leq N$ and $\beta < p(1-q)/(p-2)$ then any solution of (1.2) satisfies the TCS property.
One has the same conclusion if $p > N$ and $\beta < N(1-q)/(p-2)$.
3) If $b(x) = \|x\|^\beta$ with $N \geq 2$ and $\beta < 2(1-q)/(m-1)$ then any solution of (1.3) satisfies the TCS property.
One has the same conclusion if $N = 1$ and $\beta < (1-q)/(m-1)$.

3 A lower bound for the first eigenvalue

This section is dedicated to estimating the first eigenvalue, in $W^{1,p}(\Omega)$, of the operator $u \mapsto -\Delta_p u + h^{-p}V(.)u^{p-1}$. We have seen that a lower bound is fundamental for applications. First, we introduce a sequence of definitions. We consider a non-empty connected open subset $\Omega \subset \mathbb{R}^N$ and a measurable function V defined in Ω. We set

$$W^{1,p,V}(\Omega) = \{ \psi \in W^{1,p}(\Omega) : V(x)|\psi|^p \in L^1(\Omega) \}.$$

If $W^{1,p,V}(\Omega) \neq \{0\}$ and $\psi \in W^{1,p,V}(\Omega)$, we set

$$F_V(\psi) = \int_{\Omega} |\nabla \psi|^p + V(x)|\psi|^p \, dx, \quad (3.1)$$

and define

$$\lambda_1 = \inf \left\{ F_V(\psi) : \psi \in W^{1,p,V}(\Omega), \int_{\Omega} |\psi|^p \, dx = 1 \right\}, \quad (3.2)$$

and for $h > 0$,

$$\lambda_1(h) = \inf \left\{ F_{h^{-p}V}(\psi) : \psi \in W^{1,p,V}(\Omega), \int_{\Omega} |\psi|^p \, dx = 1 \right\}, \quad (3.3)$$

Thus $\lambda_1(h)$ is the first eigenvalue of the operator

$$u \mapsto -\Delta_p u + h^{-p}V(.)|u|^{p-2}u.$$ \quad (3.4)

in $W^{1,p,V}(\Omega)$ with Neumann boundary condition if the infimum is achieved by a regular enough element of $W^{1,p,V}(\Omega)$ and $\partial \Omega \in C^1$.

We start with a simple result which enlights our arguments. On the contrary to the linear case ($p = 2$), our proof is not based on the theory of pseudodifferential operators but on the continuous injections of $W^{1,p}(\Omega)$ into the L^s spaces for suitable s.

Theorem 3.1 Suppose $N > p > 1$. Then either $\lambda_1 = -\infty$ or

$$\left(\int_{V(x) \leq \lambda_1} (\lambda_1 - V(x))^{N/p} \, dx \right)^{p/N} \geq C(p,N), \quad (3.5)$$

where $C = C(p,N) > 0$ is the positive constant of the Sobolev inequality. In addition, if there exists a minimizer in $W^{1,p,V}(\mathbb{R}^N)$,

$$\left(\int_{V(x) < \lambda_1} (\lambda_1 - V(x))^{N/p} \, dx \right)^{p/N} \geq C(p,N). \quad (3.6)$$
Proof. Let ψ be in $W^{1,p,V}(\mathbb{R}^N)$ with $\|\psi\|_{L^p(\mathbb{R}^N)} = 1$ then
\[
\int_{\mathbb{R}^N} |\nabla \psi|^p \, dx + \int_{\mathbb{R}^N} V(x)|\psi|^p \, dx = F_V(\psi) = F_V(\psi) \int_{\mathbb{R}^N} |\psi|^p \, dx.
\]
The integral with V is split in two parts, that is, $\mathbb{R}^N = \{ x : V(x) < F_V(\psi) \} \cup \{ x : V(x) \geq F_V(\psi) \}$. Therefore,
\[
\int_{\mathbb{R}^N} |\nabla \psi|^p \, dx \leq \int_{V(x)<F_V(\psi)} (F_V(\psi) - V(x)) \rho(x) \, dx. \tag{3.7}
\]
Hölder’s inequality leads to
\[
\int_{\mathbb{R}^N} |\nabla \psi|^p \, dx \leq \left(\int_{V(x)<F_V(\psi)} (F_V(\psi) - V(x))^N/p \, dx \right)^{p/N} \left(\int_{\mathbb{R}^N} \rho(x)^p \, dx \right)^{1 - \frac{p}{N}}. \tag{3.8}
\]
since $\{ x : V(x) < F_V(\psi) \} \subset \mathbb{R}^N$. Non zero constants do not belong to $W^{1,p,V}(\mathbb{R}^N)$ and so all functions ψ satisfy $\int_{\mathbb{R}^N} |\nabla \psi|^p \, dx > 0$. We can apply Sobolev inequality. The Beppo-Levi theorem completes the proof. □

Remark 3.1 If Ω is any open domain of \mathbb{R}^N, we define
\[
W^{1,p,V}_0(\Omega) = \{ \psi \in W^{1,p}_0(\Omega) : V(x)|\psi|^p \in L^1(\Omega) \},
\]
and if $W^{1,p,V}_0(\Omega) \neq \{0\}$,
\[
\tilde{\lambda}_1 = \inf \{ F_V(\psi) : \psi \in W^{1,p,V}_0(\Omega), \int_{\Omega} |\psi|^p \, dx = 1 \},
\]
then the estimates in Theorem 3.1 hold for $\tilde{\lambda}_1$.

When Ω is a C^1 bounded domain of \mathbb{R}^N and V is a measurable function such that
\[
V \in L^\infty(\Omega), \quad \text{ess inf}_\Omega V = 0 \quad \text{and} \quad \int_{\Omega} V(x) \, dx > 0, \tag{3.9}
\]
we set u_h the first eigenfunction related to the first eigenvalue $\lambda_1(h)$.

Recall that γ is a positive number which satisfies
\[
\gamma \begin{cases} = \frac{N}{p} & \text{for } 1 < p < N, \\ \in (1, +\infty) & \text{for } p = N, \\ = 1 & \text{for } p > N, \end{cases} \tag{3.10}
\]
with $\gamma^{\frac{1}{\gamma-1}} = +\infty$ if $\gamma = 1$. This γ is such that $W^{1,p}$ imbeds $L^q(\Omega)$ continuously with $q = p \frac{\gamma}{\gamma-1}$.

Theorem 3.2 Assume that (3.9) holds. Then for h small enough,
\[
\left(\int_{V(x)<h^{\gamma_1}(h)} (\lambda_1(h) - \frac{V(x)}{h^p})^{\gamma} \, dx \right)^{1/\gamma} \geq C,
\]
where $C = C(p, N, \gamma, \Omega, V)$ is a positive real constant.
Proof. We start with (3.8) because the beginning is similar. Replacing \mathbb{R}^N, ψ and V by Ω, u_h and V_h the Hölder’s inequality gives

$$\int_{\Omega} |\nabla u_h|^p \, dx \leq \left(\int_{V(x) < h^p \lambda_1(h)} (\lambda_1(h) - \frac{V(x)}{h^p})^\gamma \, dx \right)^{1/\gamma} \left(\int_{\Omega} |u_h|^q \, dx \right)^{p/q},$$

where $q = \frac{p}{\gamma}$. Thus, by the imbeddings,

$$\left(\int_{V(x) < h^p \lambda_1(h)} (\lambda_1(h) - \frac{V(x)}{h^p})^\gamma \, dx \right)^{1/\gamma} \geq C \frac{\|\nabla u_h\|_{L^p(\Omega)}}{1 + \|\nabla u_h\|_{L^p(\Omega)}},$$

with $C = C(p, N, \Omega, \gamma)$ a positive real number. The main idea is to prove that

$$\liminf_{h \to 0} \|\nabla u_h\|_{L^p(\Omega)} > 0.$$

Suppose that there exists a sequence $\{h_n\}$ of positive real numbers which goes to zero such that

$$\lim_{n \to +\infty} \|\nabla u_{h_n}\|_{L^p(\Omega)} = 0.$$

Hence (u_{h_n}) is bounded in $W^{1,p}(\Omega)$, so there exists a function u_0 in $W^{1,p}(\Omega)$ such that, up to a subsequence, $u_{h_n} \rightharpoonup u_0$ weakly in $W^{1,p}(\Omega)$. Obviously, $\|\nabla u_0\|_{L^p(\Omega)} = 0$. Therefore, $u_0 = C$ where C is a real. Thanks to the Rellich-Kondrachov theorem, up to a subsequence, $u_{h_n} \to C$ strongly in $L^p(\Omega)$ so

$$C = \left(\frac{1}{\text{meas}(\Omega)} \right)^{1/p}.$$

We deduce that $\lim_{n \to +\infty} h_n^p \lambda_1(h_n) = \frac{\int V(x) \, dx}{\text{meas}(\Omega)}$. But from lemma 3.2 in [3], $\lim_{h \to 0} h^p \lambda_1(h) = 0$ which leads to a contradiction. □

A simpler form is provided in the following corollary.

Corollary 3.1 If (3.9) holds then for h small enough,

$$\lambda_1(h) (\text{meas} \{x : V(x) < h^p \lambda_1(h)\})^\gamma \geq C,$$

where $C = C(p, N, \gamma, \Omega, V)$.

We end this section by quoting a theorem. For Ω a domain of \mathbb{R}^N bounded or not, regular or not and V a measurable function defined on Ω such that $W^{1,p,V}(\Omega) \neq \{0\}$, we define a well for a measurable function V [1].

Definition. We say that V has a well in U if U is a C^1 bounded, connected, non-empty open set of Ω and if there exists $\psi_0 \in W^{1,p,V}(\Omega)$ with $\|\psi_0\|_{L^p(\Omega)} = 1$ such that $\int_{\Omega \setminus U} V(x) |\psi_0|^p \, dx < a = \text{essinf}_{\Omega \setminus U} V$ with $\text{meas}(\Omega \setminus U) > 0$.

The term of well generalizes the definition in [8].

Theorem 3.3 ([3]) If V has a well in U, for h small enough,

$$\left(\int_{V(x) \leq h^p \lambda_1(h)} (\lambda_1(h) - h^{-p} V(x))^\gamma \, dx \right)^{1/\gamma} \geq C,$$
where C is a positive constant which does not depend on h.

In addition, if there exists a minimizer in $W^{1,p, V}(\Omega)$,

$$
\left(\int_{V(x) < h^{\lambda_1}(h)} (\lambda_1(h) - h^{-p}V(x))^\gamma \, dx\right)^{1/\gamma} \geq C.
$$

The proof is technical but some arguments have already been used for Theorem 3.2.

4 Summary and open questions

For the sake of completeness, we quote another theorem of.

Theorem 4.1 ([3]) Suppose that b is a continuous and nonnegative function defined in Ω which satisfies for some $x_0 \in \Omega$

$$
\lim_{r \to 0} r^2 \ln(1/\|b\|_{L^\infty(B_r(x_0))}) = \infty.
$$

If u is a weak solution of (1.1) then u does not satisfies the TCS property.

Up to now, we have the following:

<table>
<thead>
<tr>
<th>$p = 2$</th>
<th>$p > 2$</th>
<th>$m > 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integral criterion</td>
<td>$\int_0^1 \ln(\mu(t)) \frac{dt}{\mu(t)} < \infty$</td>
<td>$\int_0^1 (\ln(\mu(t,p)))^{p-1} \frac{dt}{\mu(t,p)} < \infty$</td>
</tr>
<tr>
<td>$1/b$ criterion with</td>
<td>$\ln(1/b) \in L^s$</td>
<td>$1/b \in L^s$</td>
</tr>
<tr>
<td>$s > \frac{N}{2}$</td>
<td>$s > \frac{p-2}{1-q} N$, $N \geq p$</td>
<td>$s > \frac{p-2}{1-q} N$, $N \geq 2$</td>
</tr>
<tr>
<td>Radial case for $\beta \geq 0$ and</td>
<td>$\exp(-1/|x|^\beta)$</td>
<td>$\frac{|x|^\beta}{p(1-q)}$, $N \geq p$</td>
</tr>
<tr>
<td>$\beta < 2$</td>
<td>$\beta < \frac{N(1-q)}{p-2}$, $N < p$</td>
<td>$\beta < \frac{1-q}{m-1}$, $N = 1$</td>
</tr>
<tr>
<td>Converse</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Non TCS property for</td>
<td>$\exp(-1/|x|^\beta)$</td>
<td>:</td>
</tr>
<tr>
<td>$\beta > 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Open questions

1. What happens for $p = 2$ and $\beta = 2$? It does not seem within sight.
2. We have no genuine converse for $p > 2$ and $m > 1$. A converse has been found for $p = 2$ because $L^2(\Omega)$ has an inner product. More precisely, for $p > 2$, $\int_\Omega u^{p-1}v\,dx \neq \int_\Omega v^{p-1}u\,dx$ in general. We search for another test-functions (see [3] for details).

3. When $p > 2$, we have a good generalization of the Cwikel, Lieb and Rosenblyum formula, that is, for large dimension ($N > p$). The estimate for $N \leq p$ is far from the optimum. When $p = 2$, the Lieb and Thirring formula works well. We hope that we will find an equivalent.

4. In [7], they also deal with second order elliptic equations with a strong absorption, i.e., $u_{tt} + \Delta u - a(x)u^q = 0$. Heuristically speaking, changing $\mu(\alpha)$ into $\sqrt{\mu(\alpha)}$ gives a sufficient condition for the TCS property. We are working on this type of equation when a depends also on t.

5. More generally, the following problem $\Delta_p u - a(x)u^{p-1} = 0$ in an outside domain is difficult to handle. On \mathbb{R}^N minus a ball, a similar technique may be possible.

References

Yves Belaud
Laboratoire de Mathématiques et Physique Théorique, CNRS ESA 6083, Faculté des Sciences et Techniques, Université François Rabelais, 37200 Tours
e-mail: belaud@univ-tours.fr